Structured Ordinal Features for Appearance-Based Object Representation
نویسندگان
چکیده
In this paper, we propose a novel appearance-based representation, called Structured Ordinal Feature (SOF). SOF is a binary string encoded by combining eight ordinal blocks in a circle symmetrically. SOF is invariant to linear transformations on images and is flexible enough to represent different local structures of different complexity. We further extend SOF to Multi-scale Structured Ordinal Feature (MSOF) by concatenating binary strings of multi-scale SOFs at a fix position. In this way, MSOF encodes not only microstructure but also macrostructure of image patterns, thus provides a more powerful image representation. We also present an efficient algorithm for computing MSOF using integral images. Based on MSOF, statistical analysis and learning are performed to select most effective features and construct classifiers. The proposed method is evaluated with face recognition experiments, in which we achieve a high rank-1 recognition rate of 98.24% on FERET database.
منابع مشابه
Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملAutomatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach
In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...
متن کاملContour-based object detection
The arrival of appearance-based image features has dramatically influenced the field of visual object recognition. Previous work has shown, however, that contour curvature and junctions are important for shape representation and detection. We investigate a local representation of contours for object detection that complements appearance-based information, such as texture. We present a non-param...
متن کاملLearning structured ordinal measures for video based face recognition
This paper presents a structured ordinal measure method for video-based face recognition that simultaneously learns ordinal filters and structured ordinal features. The problem is posed as a non-convex integer program problem that includes two parts. The first part learns stable ordinal filters to project video data into a large-margin ordinal space. The second seeks self-correcting and discret...
متن کاملFeature-Centric Evaluation for Efficien
We describe a cascaded method for object detection. This approach uses a novel organization of the first cascade stage called “feature-centric” evaluation which re-uses feature evaluations across multiple candidate windows. We minimize the cost of this evaluation through several simplifications: (1) localized lighting normalization, (2) representation of the classifier as an additive model and ...
متن کامل